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Abstract

A new concept called the dominance of equidistribution is introduced for analyzing moving mesh partial differential
equations for numerical simulation of blowup in reaction diffusion equations. Theoretical and numerical results show that
a moving mesh method works successfully when the employed moving mesh equation has the dominance of equidistribu-
tion. The property can be verified using dimensional analysis. In several aspects the current work generalizes previous work
where a moving mesh equation is shown to have this dominance of equidistribution if it preserves the scaling invariance of
the underlying physical partial differential equation and uses a small, constant value for s (a parameter used for adjusting
response time of the mesh movement to the change in the physical solution). Also, cases with both constant and variable s
are considered here.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We are concerned with the numerical solution of reaction diffusion equations whose solutions become
unbounded (or blowup) in a finite time. This type of partial differential equation (PDE) arises from mathemat-
ical idealizations of models describing combustion in chemicals or chemotaxis in cellular aggregates, the for-
mation of shocks in the inviscid Burgers’ equation, and the space-charge equations; e.g. see Pao [18]. Such a
blowup in the solution often represents an important change in the properties of the model, such as the igni-
tion of a heated gas mixture, and it is important that it is reproduced accurately by a numerical computation.
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Since a blowup typically occurs on increasingly small length scales as well as time scales, it is essential to use an
adaptive mesh in the numerical simulation. Two types of mesh adaptation have been commonly used, mesh
refinement [4] and mesh movement [8]. With the former approach, mesh points are added as the length scale is
getting smaller whereas in the latter approach a fixed number of mesh points are moved to resolve the increas-
ingly small length scale.

In this paper we are interested in the moving mesh solution of blowup problems and focus particularly on
the MMPDE (moving mesh PDE) moving mesh method developed in [13]. It has been shown in [8] that the
key to the success of the method is to have MMPDEs preserve the scaling invariance of the underlying phys-
ical equation. This idea has since been used with success in most computations of blowup solutions that use
the MMPDE method; e.g. see [7]. However, as we shall see in Sections 4 and 5, preserving the scaling invari-
ance is neither sufficient nor necessary in general for MMPDEs to work satisfactorily, although it is sufficient
for the particular approach considered in [8] where the parameter s used in MMPDEs for adjusting the
response time of mesh movement to the change in the physical solution is taken to be constant. Approaches
with variable s have also been used successfully by a number of researchers; e.g. see [12,19]. Thus, from both
the theoretical and practical points of view there is a need for an in-depth study of the moving mesh method
for blowup problems.

The objective of this paper is to present such a study. We are most concerned with conditions under which
MMPDEs work satisfactorily. The tool we use is a new concept called the dominance of equidistribution: the
terms representing the well known equidistribution principle [10,11] for mesh adaptation dominate other terms
in the equation. We show that the solution of an MMPDE stays closely to the solution of the equidistribution
principle when it has this property, implying that the dominance of equidistribution is sufficient for an
MMPDE to work satisfactorily. Moreover, we show that the dominance of equidistribution can often be
straightforwardly verified using dimensional analysis. A special case of the dominance of equidistribution is
to have an MMPDE preserve the scaling invariance of the underlying physical PDE and to choose a small
s – the approach used in [8]. Furthermore, the concept applies to general situations, including those with con-
stant and variable s, and even in multi-dimensions.

It is worth mentioning some history of numerical simulation of blowup. The first works on the topic are
Nakagawa [16] and Nakagawa and Ushijima [17] where finite difference and finite element schemes on a uni-
form mesh are employed and analyzed for blowup for PDE (1) with p ¼ 2. A mesh refinement strategy is pro-
posed by Berger and Kohn [4] and a moving mesh method is presented by Budd et al. [8] for the numerical
solution of blowup problems. A survey is given by Bandle and Brunner [2]. Recent works include [1,5–7,9].

An outline of the paper is as follows. The MMPDE method is described in the next section for a classic
problem with blowup solutions. The dimensional analysis for both the physical and mesh equations is pre-
sented in Section 3. The question of how to verify the dominance of equidistribution using dimensional anal-
ysis is also addressed in this section. Theoretical and numerical analyses of MMPDEs with constant and
solution-dependent s are given in Sections 4 and 5, respectively. Additional comments and conclusions are
contained in the final section.
2. Moving mesh PDE method

We study the moving mesh method for a classic problem with a blowup solution:
ut ¼ uxx þ up; p > 1 ð1Þ
subject to the boundary and initial conditions
uð0; tÞ ¼ uð1; tÞ ¼ 0; ð2Þ
uðx; 0Þ ¼ u0ðxÞ > 0: ð3Þ
It is known that when the initial solution is sufficiently large, the solution of the initial-boundary value prob-
lem tends to infinity at a point, say x� 2 ð0; 1Þ, as t! T for some finite time T > 0, x� and T are referred to as
the blowup point and time, respectively. A more precise description of the blowup profile of the solution is
given in the following theorem (see [3] and references therein):
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Theorem 2.1. Let b ¼ 1
p�1. If the initial solution is sufficiently large, then the solution to the initial-boundary value

problem (1)–(3) satisfies
lim
t!T
ðT � tÞbuðx� þ l ðT � tÞða� logðT � tÞÞ½ �1=2

; tÞ ¼ bb 1þ l2

4pb

� ��b

ð4Þ
uniformly for all jlj 6 C for a given constant C > 0, where a is a constant depending only on the initial solution.

The theorem shows that the blowup profile can best be shown in the so-called kernel coordinate l ¼ lðx; tÞ,
which is fixed as t! T and defined as
l ¼ ðx� x�Þ½ðT � tÞða� logðT � tÞÞ��1=2
: ð5Þ
A moving mesh of a fixed number of points is used in the moving mesh solution of the blowup problem. The
mesh can be suitably defined through a coordinate transformation, viz., a mesh of N points can be expressed as
xjðtÞ ¼ xðnj; tÞ with nj ¼
j� 1

N � 1
; j ¼ 1; . . . ;N ; ð6Þ
where x ¼ xðn; tÞ is a coordinate transformation between the computational domain Xc ¼ ½0; 1� and the phys-
ical domain X ¼ ½0; 1� and satisfies the boundary conditions
xð0; tÞ ¼ 0; xð1; tÞ ¼ 1: ð7Þ

Moreover, a discretization of PDE (1) on the moving mesh can readily be carried out using this coordinate
transformation. Transforming (1) from the old coordinates ðx; tÞ to the new ones ðn; tÞ, we have
_u� un

xn
_x ¼ 1

xn

o

on
un

xn

� �
þ up; ð8Þ
where _u and _x denote the time derivatives in the new coordinates, i.e.,
_u ¼ ou
ot
ðxðn; tÞ; tÞ

����
n fixed

; _x ¼ ox
ot
ðn; tÞ

����
n fixed

:

Numerical methods can be used to discretize (8) on uniform meshes nj; j ¼ 1; . . . ;N . In our numerical tests, we
use the high-order conservative collocation methods introduced in [14] and the codes (MOVCOL) developed
based on the methods.

For the MMPDE method, the coordinate transformation is determined as the solution of an MMPDE.
Three MMPDEs in [13], MMPDE4, MMPDE5, and MMPDE6, are considered in this paper. They read as
� s
o

on
M

o _x
on

� �
¼ o

on
M

ox
on

� �
; ð9Þ

s _x ¼ o

on
M

ox
on

� �
; ð10Þ

� s
o2 _x

on2
¼ o

on
M

ox
on

� �
; ð11Þ
where M ¼ Mðx; tÞ is the monitor function depending on the physical solution and used for controlling mesh
concentration and s > 0 is a parameter used for adjusting the response time of mesh movement to changes in
M. Following [8], we consider the monitor function in the general form
Mðx; tÞ ¼ uc; ð12Þ

where c > 0 is a parameter. In our computation (using the code MOVCOL), the coupled system consisting of
(8) and one of the MMPDEs is integrated for the physical solution and the mesh simultaneously.

MMPDEs (9)–(11) are formulated by adding a mesh speed term to the equidistribution principle that takes
the form
o

on
M

ox
on

� �
¼ 0; ð13Þ
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subject to the boundary conditions (7). The goal of such a formulation is to form a mesh equation that is of
parabolic type and has a solution staying closely to the solution of (13), at least for small s. The parabolic
nature of the MMPDEs provides a degree of smoothness in mesh movement and also makes the integration
of the mesh equation easier. On the other hand, having their solutions stay closely to that of (13) warrants
a level of mesh adaptivity. Unfortunately, this approximation cannot always be guaranteed in practice,
especially in our current situation where the monitor function M depends on a physical solution that be-
comes unbounded as the blowup develops. Nevertheless, we show in Sections 4 and 5 that this is the case
when an MMPDE has the dominance of equidistribution – the left-hand side term is very small or even
diminishing as t! T compared to the right-hand side term that represents the equidistribution principle.
The dominance of equidistribution of the MMPDEs is investigated in the next section using dimensional
analysis.

MMPDE4 and MMPDE6 have been considered in [8] for mesh movement for the simulation of blowup. It
is shown that, when s is chosen as a small constant and the monitor function (12) is chosen such that the
MMPDEs preserve the scaling invariance of the original PDE (1), the resulting coordinate transformation
takes the form
xðn; tÞ ¼ x� þ ðT � tÞ
1
2½a� logðT � tÞ�

1
2zðn; tÞ; ð14Þ
with the property
zðn; tÞ ¼ z0ðnÞ þOðsÞ þ oð1Þ; ð15Þ

where oð1Þ denotes terms tending to zero as t! T and z0ðnÞ is a function associated with the equidistribution
principle (13). A coordinate transformation in the form (14) with the property (15) is desirable for blowup
problems because, in this way, the computational coordinate n is a function of the kernel coordinate l (cf.
(5)) and, from Theorem 2.1, the blowup profile of the solution can be properly shown in the coordinate n.
As will be seen in the next section, the MMPDEs have the dominance of equidistribution under these
conditions.

3. Dimensional analysis, scaling invariance, and dominance of equidistribution

In this section we study dimensional analysis and scaling invariance for the physical and moving mesh
PDEs, tools that will be employed in the next sections for the analysis of the MMPDEs. We also investigate
the dominance of equidistribution of MMPDEs using dimensional analysis.

We begin with the physical PDE (1). Denote the dimensions of variables u, t, and x by ½u�, ½t�, and ½x�,
respectively. Then, the dimensions of the terms ut, uxx, and up in the equation are given by
½ut� ¼
½u�
½t� ; ½uxx� ¼

½u�
½x�2

; ½up� ¼ ½u�p:
The fact that all terms in the physical PDE are dimensionally homogeneous implies
½u�
½t� ¼

½u�
½x�2
¼ ½u�p:
This yields the dimension relations
½x� ¼ ½t�
1
2; ½u� ¼ ½t��

1
p�1 ¼ ½t��b

: ð16Þ
Thus, if the dimension of t is changed by a factor k > 0, the dimensions of x and u must change by factors k1=2

and k�b, respectively, to keep the physical equation dimensionally balanced. This suggests, and it is easy to
verify, that the PDE (1) be invariant under the scaling transformation
t! kt;

x! k
1
2x;

u! k�bu;

8><
>: 8 k > 0: ð17Þ
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We now analyze the dimensions of the MMPDEs. We first notice that the computational domain can al-
ways be chosen as the unit interval, so the computational coordinate is dimensionless. Denote the dimension
of s by ½s�. Then the dimension equation for MMPDE5 reads as
Table
Summ

MMPD

MMPD

MMPD

‘‘EP d
½s�½x�
½t� ¼ ½M �½x�;
or after simplification,
½s�
½t� ¼ ½M �: ð18Þ
For the monitor function in the form (12), the equation becomes
½s�
½t� ¼ ½u�

c
; ð19Þ
or using (16),
½s�½t�bc�1 ¼ 1: ð20Þ

This indicates that the magnitude of the left-hand side term of MMPDE5 in (10) is on the order ½s�½t�bc�1 com-
pared to that of the right-hand side term. For the situation where s is taken as constant, we have ½s� ¼ 1. In
addition, for the underlying physical PDE (1) the time scale can be taken as ½t� ¼ T � t, which becomes
increasingly small as t! T . Then from (20) we can see that the left-hand side term is vanishing as t! T when
bc > 1. In this case, the equidistribution term dominates and thus MMPDE5 has the dominance of equidis-
tribution. On the other hand, it is easy to see that this will not happen when bc < 1. The critical case is bc ¼ 1.
In this case, (20) is balanced and MMPDE5 is dimensionally homogeneous and invariant under the scaling
transformation (17). The dimension homogeneity means that all terms in the equation are of the same order
of magnitude. Recalling that the constant parameter s is contained in the left-hand side term, we can make the
MMPDE equidistribution dominant by choosing s sufficiently small.

MMPDE6 has the same dimension equation and thus the same dominance of equidistribution as
MMPDE5.

The dimension equation of MMPDE4 reads as
½s�½x�½M �
½t� ¼ ½M �½x�;
or after simplification,
½s�
½t� ¼ 1: ð21Þ
When s is taken as constant, i.e., ½s� ¼ 1, the equidistribution term (the right-hand side term) is always dom-
inated by the left-hand side term. In this case, MMPDE4 never has the dominance of equidistribution.

The above results are summarized in Table 1. The situation with solution-dependent s is discussed in Sec-
tion 5 and the result is summarized in Table 3.
1
ary of theoretical results for MMPDEs with constant s

E M ¼ uc s > 0 EP dom. Scaling Inv. Theory Tests

E5 or MMPDE6 bc > 1 Any Yes No (39), (41), (42) Fig. 1
bc ¼ 1 Large No Yes Unsatisfactory Fig. 2

Small Yes Yes (49) and (50) Fig. 3
bc < 1 Any No No Unsatisfactory Fig. 4

E4 bc > 0 Any No No Unsatisfactory Fig. 5

om.” is the abbreviation of the dominance of equidistribution and ‘‘Scaling Inv.” for scaling invariance.
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4. Moving mesh PDEs with constant s

In this section we study MMPDE4, MMPDE5, and MMPDE6 with s being taken as constant and the mon-
itor function chosen as in (12). We are most interested in whether or not the formal analysis of the previous sec-
tion is adequate for describing when they work satisfactorily and have dominance of equidistribution. The
satisfaction is judged by whether or not they generate a coordinate transformation of the form (14) with property
zðn; tÞ ! z0ðnÞ as t! T : ð22Þ

As mentioned in Section 2, the solution profile in the peak region of blowup can be properly resolved in the
computational coordinate n when the coordinate transformation is of the form (14) with property (22). The
approach we use here is similar to that of [8], i.e., the MMPDEs are solved analytically using the exact form
(4) for the solution uðx; tÞ. This approach is not practical in general since the physical solution is unknown and
sought by the computation. Nevertheless, the analysis determines the ‘‘optimal” mesh for our particular prob-
lem. Moreover, the analysis in [8] for the semi-discrete system of the physical PDE coupled with the mesh
equation shows that its self-similar solutions for u and x are consistent with those obtained by the approach
assuming the exact form (4). In this sense, the results we obtain here can be viewed as continuous limits of the
semi-discrete approximations. Finally, it should be emphasized that the approach is for theoretical analysis
only. In actual computation, the monitor function is calculated using the computed solution and the resulting
mesh is thus truly adaptive. The numerical results obtained this way are used to verify our theoretical findings
in this and the following sections.

4.1. MMPDE5

We first consider MMPDE5 (10). Expanding the derivative on the right-hand side gives
s _x ¼ M
o2x

on2
þ oM

on
ox
on
: ð23Þ
We seek a coordinate transformation in the form (14). By differentiating (14) with respect to t and n, we have
_x ¼ 1

2
ðT � tÞ�

1
2 a� logðT � tÞ½ �

1
2 �1þ a� logðT � tÞ½ ��1
h i

z

þ ðT � tÞ
1
2 a� logðT � tÞ½ �

1
2 _z; ð24Þ

xn ¼ ðT � tÞ
1
2 a� logðT � tÞ½ �

1
2zn; ð25Þ

xnn ¼ ðT � tÞ
1
2 a� logðT � tÞ½ �

1
2znn: ð26Þ
Using the exact form (4) for the solution uðx; tÞ, from (14) and (12) we have
uðx; tÞ ¼ ðT � tÞ�bbb 1þ z2

4pb

� ��b

þ oððT � tÞ�bÞ; ð27Þ

M ¼ ðT � tÞ�bcbbc 1þ z2

4pb

� ��bc

þ oððT � tÞ�bcÞ; ð28Þ

Mn ¼ �
c

2p
ðT � tÞ�bcbbc 1þ z2

4pb

� ��bc�1

zzn þ oððT � tÞ�bcÞ: ð29Þ
Inserting these results into (23) yields

s
2
ðT � tÞ�

1
2½a� logðT � tÞ�

1
2½�1þ ½a� logðT � tÞ��1� zþ sðT � tÞ

1
2½a� logðT � tÞ�

1
2 _z

¼ ðT � tÞ
1
2�bcbbc½a� logðT � tÞ�

1
2 1þ z2

4pb

� ��bc

znn �
cbbc

2p
ðT � tÞ

1
2�bc½a� logðT � tÞ�

1
2 1þ z2

4pb

� ��bc�1

zðznÞ2

þ o ðT � tÞ
1
2�bc½a� logðT � tÞ�

1
2

� �
;
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or after simplification,
s
2
ðT � tÞbc�1½�1þ ½a� logðT � tÞ��1�zþ sðT � tÞbc

_z

¼ bbc 1þ z2

4pb

� ��bc

znn �
cbbc

2p
1þ z2

4pb

� ��bc�1

zðznÞ2 þ oð1Þ; ð30Þ
where oð1Þ denotes the terms tending to zero as t! T . Thus, MMPDE5 reduces to (30), using (4), (12), and
(14). In the following we study (30) in three separate cases: bc > 1, bc ¼ 1, and bc < 1.

Case 1. bc > 1. In this case, MMPDE5 has the dominance of equidistribution; see Table 1. The property can
also be checked by looking at the power of the factor T � t in (30). It is not difficult to see that (30) permits a
formal expansion for z ¼ zðn; tÞ as
zðn; tÞ ¼ z0ðnÞ þ oð1Þ; ð31Þ
where z0ðnÞ satisfies the ordinary differential equation
d2z0

dn2
¼ c

2p
z0

1þ z2
0

4pb

dz0

dn

� �2

: ð32Þ
The above equation can be obtained directly from the equidistribution principle (13) using the same proce-
dure, and therefore z0ðnÞ can be considered as an approximation associated with equidistribution. Then
(31) implies that the solution of the MMPDE5 stays closely to that of (13) as t! T .

The boundary conditions for z0ðnÞ are obtained as follows. From Theorem 2.1 and the form of the
coordinate transformation, (14), we observe that for any given constant C > 0, the mesh points ðxðn; tÞ; tÞ with
jzðn; tÞj; j_zðn; tÞj 6 C will eventually lie in the blowup region of the solution as t approaches T. This, combined
with expansion (31) and the fact that (14) is valid only in the blowup region, suggests
z0ðnLÞ ¼ zL
0 ; z0ðnRÞ ¼ zR

0 ; ð33Þ

where nL, nR, zL

0, and zR
0 are bounded constants with �1 < zL

0; zR
0 <1 and 0 < nL < nR < 1. In theory these

constants can be determined by matching the coordinate transformation from the inside and outside of the
blowup peak region – e.g. see Kevorkian and Cole [15] for matching techniques. Unfortunately, this is a dif-
ficult task, if not impossible, for the current situation since analytic expressions for the physical solution and
thus the coordinate transformation are unavailable in regions where jx� x�j is not small. Nevertheless, they
can be estimated qualitatively. Indeed, since the equidistribution term in (10) is dominant as t! T , the solu-
tion of the MMPDE closely satisfies the equidistribution relation (13), so
Mðx; tÞ ox
on
¼ r; ð34Þ
where r ¼
R 1

0
Mðx; tÞdx. As a result, more mesh points are concentrated in the regions where M is larger and

fewer points in the regions where M is smaller. For the monitor function (12), M is much larger in the peak
region of blowup than the rest of the domain and thus most mesh points are concentrated in that region. This
implies that the peak region spans almost the entire n domain ½0; 1� since a uniform mesh in n is used in the
computation (cf. (6)). Hence, nL is close to zero and nR close to 1, i.e.,
nL � 0; nR � 1: ð35Þ

On the other hand, the boundary conditions for the coordinate transformation, xð0; tÞ ¼ 0 and xð1; tÞ ¼ 1,

imply that the points ðxð0; tÞ; tÞ and ðxð1; tÞ; tÞ should stay outside of the peak. In form (14), they must corre-
spond to the limits of large jzj: zð0; tÞ ¼ �1 and zð1; tÞ ¼ 1. From (31) and (35) zL

0 and zR
0 , although bounded,

should be very large, viz.,
zL
0 � �1; zR

0 � 1: ð36Þ
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The boundary value problem for (32) and (33) can be solved by viewing z0 as an independent variable.
Letting
v ¼ dz0

dn
;

by the chain rule,
d2z0

dn2
¼ dv

dz0

dz0

dn
¼ dv

dz0

v:
Eq. (32) can then be rewritten as
dv
dz0

¼ c
2p

z0

1þ z2
0

4pb

v;
whose solution takes the form
v ¼ C 1þ z2
0

4pb

� �bc

:

This gives
dz0

dn
¼ C 1þ z2

0

4pb

� �bc
or
dn
dz0

¼ C�1 1þ z2
0

4pb

� ��bc

: ð37Þ
Integrating this about z0 from zL
0 to zR

0 and using the boundary conditions (33) yields
n� nL

nR � nL ¼

R z0

zL
0

1þ s2

4pb

� ��bc
dsR zR

0

zL
0

1þ s2

4pb

� ��bc
ds
;

or
n� nL

nR � nL ¼
z0ffiffiffiffiffi
4pb
p F 1

2
; bc; 3

2
;� z2

0

4pb

� �
� zL

0ffiffiffiffiffi
4pb
p F 1

2
; bc; 3

2
;� ðz

L
0
Þ2

4pb

� �
zR

0ffiffiffiffiffi
4pb
p F 1

2
; bc; 3

2
;� ðz

R
0
Þ2

4pb

� �
� zL

0ffiffiffiffiffi
4pb
p F 1

2
; bc; 3

2
;� ðz

L
0
Þ2

4pb

� � : ð38Þ
Here, F ða; b; c; zÞ is the Gauss hypergeometric function with scalar parameters a; b; c, and z, having properties
Z z

0

1þ s2

4pb

� ��bc

ds ¼ zF
1

2
; bc;

3

2
;� z2

4pb

� �
;

lim
z!1

zffiffiffiffiffiffiffiffi
4pb

p F
1

2
; bc;

3

2
;� z2

4pb

� �
¼

ffiffiffi
p
p

2

Cðbc� 1
2
Þ

CðbcÞ ;
where C is the Gamma function. Recall that the boundary conditions for z0 have the approximation properties
(36) and (35). For this approximation, the solution (38) can be written as
z0ffiffiffiffiffiffiffiffi
4pb

p F
1

2
; bc;

3

2
;� z2

0

4pb

� �
�

ffiffiffi
p
p

C bc� 1
2


 �
CðbcÞ n� 1

2

� �
: ð39Þ
We now consider the special case bc ¼ 3
2
. For this case, we have
F
1

2
;
3

2
;
3

2
;� z2

0

4pb

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
0

4pb

q and C
3

2

� �
¼

ffiffiffi
p
p

2
:
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From (39) we get
z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

0

4pb

q � 2
ffiffiffiffiffiffiffiffi
4pb

p
n� 1

2

� �
;

or
z0ðnÞ �
4
ffiffiffiffiffiffi
pb

p
n� 1

2


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 n� 1

2


 �2
q : ð40Þ
From (14) we obtain the coordinate transformation in the peak region of blowup as
xðn; tÞ ¼ x� þ ðT � tÞ
1
2½a� logðT � tÞ�

1
2

4
ffiffiffiffiffiffi
pb

p
ðn� 1

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4 n� 1
2


 �2
q þ oð1Þ

0
B@

1
CA: ð41Þ
The solution in the region can be expressed in terms of the computational coordinate as
uðxðn; tÞ; tÞ ¼ ðT � tÞ�bbb 1� 4ðn� 1

2
Þ2

� �b

þ oð1Þ
" #

: ð42Þ
Case 2. bc ¼ 1. As we have seen in Section 3, this is a critical case. MMPDE5 is scaling invariant and all terms
in the equation are dimensionally homogeneous. Moreover, the MMPDE has the dominance of equidistribu-
tion when s is sufficiently small.

From (30) we see that zðn; tÞ can be expanded into the form (31), with z0 satisfying
d2z0

dn2
¼ c

2p
1þ z2

0

4pb

� ��1

z0

dz0

dn

� �2

� s
2b

1þ z2
0

4pb

� �
z0: ð43Þ
Letting
v ¼ dz0

dn
;

(43) becomes
v
dv
dz0

¼ c
2p

1þ z2
0

4pb

� ��1

z0v2 � s
2b

1þ z2
0

4pb

� �
z0
or
dðv2Þ
dðz2

0Þ
¼ c

2p
1þ z2

0

4pb

� ��1

v2 � s
2b

1þ z2
0

4pb

� �
:

This is a linear equation for v2 by viewing z2
0 as independent variable. Its solution can be found as
dz0

dn

� �2

¼ �2sp ln 1þ z2
0

4pb

� �
þ C

� �
1þ z2

0

4pb

� �2

; ð44Þ
where C is an integration constant.
For large s, we consider the ODE (44) with boundary conditions (33). Notice that the constant C depends

on the boundary conditions. Since the approximation (36) is valid, the constant C must be positive and large
to keep the right-hand side term of ODE (44) positive. Therefore, the ODE (44) with boundary conditions (36)
has no solutions. To keep this from happening, nL and nR must be far away from the points 0 and 1,
respectively. This also means few points are distributed in the blowup peak region, which conflicts with the
role of mesh adaptation. Thus, MMPDE5 works unsatisfactorily for the case bc ¼ 1 with large s.
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Next, we consider the situation when s is sufficiently small. From (14), we see that
zn ¼ xn½ðT � tÞða� logðT � tÞÞ��1=2
:

It follows that zn > 0 for 0 < T � t 6 1 since the moving mesh density xn > 0. From the asymptotic relation
between zðn; tÞ and z0ðnÞ (see (22)), z0ðnÞ is monotonically increasing. The boundary conditions (33) then imply
zL
0 6 z0 6 zR

0 :
Thus, when s is chosen sufficiently small such that
2sp ln 1þ ðz
L
0Þ

2

4pb

 !
� 1; 2sp ln 1þ ðz

R
0 Þ

2

4pb

 !
� 1;
(44) can be written as
dz0

dn

� �2

¼ ½C þOðsÞ� 1þ z2
0

4pb

� �2

; ð45Þ
which is equivalent to
dn
dz0

¼ ½C þOðsÞ��
1
2 1þ z2

0

4pb

� ��1

: ð46Þ
Integrating this equation about z0 from zL
0 to zR

0 and applying the boundary conditions (33) give
n� nL

nR � nL ¼
arctan z0ffiffiffiffiffi

4pb
p
� �

� arctan
zL

0ffiffiffiffiffi
4pb
p
� �

arctan
zR

0ffiffiffiffiffi
4pb
p
� �

� arctan
zL

0ffiffiffiffiffi
4pb
p
� �þOðsÞ: ð47Þ
Using the approximations (36) and (35), we obtain
n �
arctan z0ffiffiffiffiffi

4pb
p
� �

þ p
2

p
þOðsÞ
or
z0ðnÞ �
ffiffiffiffiffiffiffiffi
4pb

p
tan p n� 1

2

� �� �
þOðsÞ: ð48Þ
Then the coordinate transformation and the physical solution in the peak region of blowup satisfy
xðn; tÞ ¼ x� þ ðT � tÞ
1
2½a� logðT � tÞ�

1
2

ffiffiffiffiffiffiffiffi
4pb

p
tan p n� 1

2

� �� �
þOðsÞ þ oð1Þ

� �
; ð49Þ

uðxðn; tÞ; tÞ ¼ ðT � tÞ�bbb cos2b p n� 1

2

� �� �
þOðsÞ þ oð1Þ

� �
: ð50Þ
It is emphasized that (49) and (50) are valid only for small s. They have been obtained in [8] for MMPDE6
using a scaling invariance argument. As will be seen in the next subsection, MMPDE5 and MMPDE6 lead to
almost the same coordinate transformation when s is small.

Case 3. 0 < bc < 1. For this case, the MMPDE does not have the dominance of equidistribution. This can
also be seen by checking the power of the factor T � t in (30). Moreover, the solution zðn; tÞ to (30) cannot
be expanded into
zðn; tÞ ¼ z0ðnÞ þOðsÞ þ oð1Þ or zðn; tÞ ¼ z0ðnÞ þ oð1Þ:

Thus, we cannot expect that the blowup peak of the solution can be properly resolved on an adaptive moving
mesh determined by MMPDE5 with the current choice of the monitor function.
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4.2. MMPDE6

The MMPDE6 has the form (11). The main difference between MMPDE5 and MMPDE6 lies in the left-
hand term. Using (14) and (12) we have
� s
2
ðT � tÞbc�1½�1þ ½a� logðT � tÞ��1�znn � sðT � tÞbc

_znn

¼ bbc 1þ z2

4pb

� ��bc

znn �
cbbc

2p
1þ z2

4pb

� ��bc�1

zðznÞ2 þ oð1Þ: ð51Þ
This equation is similar to (30) obtained for MMPDE5 except that z and _z on the left-hand side are replaced
here by znn and _znn, respectively. Since these changes do not alter the power of the factor ðT � tÞ, the analysis
given in the previous subsection for MMPDE5 for cases bc > 1 and bc < 1 also works for MMPDE6. In par-
ticular, for the case bc ¼ 3

2
ð> 1Þ the coordinate transformation and the physical solution in the peak region are

given in (41) and (42), respectively.
On the other hand, the situation for the critical case bc ¼ 1 is different. Instead of (43), we now have
1� s
2b

1þ z2
0

4pb

� �� �
d2z0

dn2
¼ c

2p
1þ z2

0

4pb

� ��1

z0

dz0

dn

� �2

: ð52Þ
Letting
v ¼ dz0

dn
;

we have
dv
v
¼ 1þ z2

0

4pb

� ��1

1� s
2b

1þ z2
0

4pb

� �� ��1

d 1þ z2
0

4pb

� �
:

Its solution can be found as
v ¼ C
1þ z2

0

4pb

1� s
2b 1þ z2

0

4pb

� �
������

������;

or
dn
dz0

¼ C�1 1þ z2
0

4pb

� ��1

� s
2b

�����
�����: ð53Þ
We first consider the case with s=ð2bÞ > 1. Then the above equation becomes
dn
dz0

¼ C�1 s
2b
� 1þ z2

0

4pb

� ��1
" #

:

Integrating this equation and using the boundary condition (33) yields
n� nL

nR � nL ¼
s

2b ðz0 � zL
0Þ �

ffiffiffiffiffiffiffiffi
4pb

p
arctan z0ffiffiffiffiffi

4pb
p � arctan

zL
0ffiffiffiffiffi
4pb
p

� �
s

2b ðzR
0 � zL

0Þ �
ffiffiffiffiffiffiffiffi
4pb

p
arctan

zR
0ffiffiffiffiffi
4pb
p � arctan

zL
0ffiffiffiffiffi
4pb
p

� � ;

or
s
2b

z0 �
ffiffiffiffiffiffiffiffi
4pb

p
arctan

z0ffiffiffiffiffiffiffiffi
4pb

p ¼ s
4b
ðzR

0 þ zL
0Þ �

ffiffiffiffiffiffiffiffi
4pb

p
2

arctan
zR

0ffiffiffiffiffiffiffiffi
4pb

p þ arctan
zL

0ffiffiffiffiffiffiffiffi
4pb

p
 !

þ n� ðnL þ nRÞ=2

nR � nL

s
2b
ðzR

0 � zL
0Þ �

ffiffiffiffiffiffiffiffi
4pb

p
arctan

zR
0ffiffiffiffiffiffiffiffi
4pb

p � arctan
zL

0ffiffiffiffiffiffiffiffi
4pb

p
 !" #

:

ð54Þ
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From (36) we know that ðs=ð2bÞÞðzR
0 � zL

0Þ will be very large, and then there is no expression for z0 when (36)
applies. In other words, z0ðnÞ will become very large (and therefore the corresponding physical mesh points
stay outside of the peak region) even when n is not close to nL or nR but some distance away from the midpoint
ðnL þ nRÞ=2. This conflicts with the goal of mesh adaptation that a large proportion of mesh points are con-
centrated in the peak region. In this sense, MMPDE6 is unsatisfactory in generating a proper adaptive mesh
for the current case bc ¼ 1 for large s. Note that the analysis can be straightforwardly extended to other values
of s that are not sufficiently small.

When s is sufficiently small, on the other hand, (53) can be written as
dn
dz0

¼ C�1 1þ z2
0

4pb

� ��1

þOðsÞ
" #

:

This equation is similar to (46) and the coordinate transformation and the physical solution in the peak region
of blowup take the forms as in (49) and (50).

4.3. MMPDE4

For MMPDE4 (9) we have
�sbbc 1þ z2

4pb

� ��bc
1

2
ðT � tÞ�1½�1þ ½a� logðT � tÞ��1�znn þ _znn

� �

þ scbbc

2p
1þ z2

4pb

� ��bc�1

zzn
1

2
ðT � tÞ�1½�1þ ½a� logðT � tÞ��1�zn þ _zn

� �

¼ bbc 1þ z2

4pb

� ��bc

znn �
cbbc

2p
1þ z2

4pb

� ��bc�1

z znð Þ2 þ oð1Þ: ð55Þ
It is not difficult to verify that the right-hand side term that corresponds to the equidistribution term in (9) is
dominated by the left-hand side term as t! T , and the solution zðn; tÞ for (55) cannot be expanded in the form
(31). As a result, this MMPDE, together with monitor function (12), do not lead to a coordinate transforma-
tion in the form (14) with zðn; tÞ satisfying the property (31).

For convenience we summarize in Table 1 the theoretical results obtained in this section. We can see that an
MMPDE works satisfactorily when the equidistribution term dominates as t! T . This is not surprising since
in this way the solution of the MMPDE stays close to that satisfying the equidistribution principle. One can
also see from the table that preservation of scaling invariance is neither sufficient nor necessary for an
MMPDE to work satisfactorily.

4.4. Numerical examples

We now present numerical results to verify the theoretical findings in this section. These results are obtained
with MOVCOL developed in [14]. The initial solution is taken as
u0ðxÞ ¼ 20 sinðpxÞ: ð56Þ

The number of mesh points is chosen as 41 for all computations presented in this paper.

For the purpose of verification of the theoretical results, we plot the scaled solution profile, u=kuk1, as
function of n for several values of kuk1. Note that different values of kuk1 correspond to different instants
in time.

We also plot jxi � x�j against kuk1 in logarithmic scale. To explain these functions, we take (41) and (42) as
an example. Then we have
kuk1 � ðT � tÞ�bbb or ðT � tÞ � bkuk�
1
b
1 :
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It follows that, as t! T ,
Table
Summ

MMPD

MMPD

MMPD

MMPD

u/
u m

ax
u
kuk1

! 1� 4 n� 1

2

� �2
 !b

ð57Þ
and
log jxi � x�j ! � 1

2b
log kuk1 þ log

4
ffiffiffiffiffiffi
pb

p
ðni � 1

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4ðni � 1
2
Þ2

q þ 1

2
log bþ 1

2
log aþ 1

b
log kuk1 � log b

� �

� � 1

2b
log kuk1 þ ci; ð58Þ
where ci is a constant depending on ni. Thus, when MMPDE5 works satisfactorily, the computed solution

u=kuk1 converges to a steady-state profile 1� 4 n� 1
2


 �2
� �b

while log jxi � x�j is becoming linear in log kuk1
for most mesh points in the limit t! T .

Numerical results are shown in Table 2 and Figs. 1–5. It is not difficult to see that they are consistent with
the theoretical predictions. In particular, one can see that for the unsatisfactory situations shown in Figs. 2, 4,
and 5, fewer and fewer mesh points are concentrated in the peak region of blowup (which is getting narrower
as t! T ) and the solution u=kuk1 is becoming more like a delta function as t! T . On the other hand, for
2
ary of numerical results for MMPDEs with constant s

E s M ¼ uc p Figs. Satisfactory EP dom. Scaling Inv.

E5 10�5 bc ¼ 1:5 3 Not shown Yes Yes No
102 bc ¼ 1:5 3 1 Yes Yes No
10�5 bc ¼ 1 2 Not shown Yes Yes Yes
102 bc ¼ 1 2 2 No No Yes
10�5 bc ¼ 1 3 3 Yes Yes Yes
10�2 bc ¼ 2=3 3 4 No No No

E6 10�5 bc ¼ 1:5 3 Not shown Yes Yes No
102 bc ¼ 1:5 3 Not shown Yes Yes No

E4 10�5 bc ¼ 1:5 3 5 No No No
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Fig. 1. MMPDE5, M ¼ u1:5ðp�1Þ, p ¼ 3, s ¼ 102, bc ¼ 1:5.
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Fig. 2. MMPDE5, M ¼ up�1, p ¼ 2, s ¼ 102, bc ¼ 1.
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satisfactory situations most of mesh points are retained in the peak region of blowup while the solution
u=kuk1 is converging to a limit profile. More importantly, the numerical results show that MMPDEs work
satisfactorily when they have the dominance of equidistribution.

5. Moving mesh PDEs with variable s

We now study the MMPDEs with s taken as a time-dependent function depending on the solutions. Here
we use the strategy in [12] with which s is defined such that the underlying MMPDE is dimensionally homo-
geneous. Again, we choose M in the general form (12) with c > 0.

5.1. MMPDE5

For the dimension Eqs. (20) and (16) we have
½s� ¼ ½t�1�bc ¼ ½u�c�
1
b:
To make this equation balanced, we choose s as
s ¼ juc�1
b; ð59Þ
where j > 0 is a dimensionless constant. With this choice of s, MMPDE5 is dimensionally homogeneous and
all the terms contained in the equation are of the same order of magnitude. MMPDE5 can be made to have the
dominance of equidistribution if j is chosen sufficiently small. This argument applies to MMPDE4 and
MMPDE6 with corresponding choices of s.

Note that if bc ¼ 1, then s ¼ j is constant. The case has been discussed in Section 4.1. So we assume that
bc 6¼ 1 in this subsection. With the choice of s (59) and the form of the coordinate transformation (14),
MMPDE5 can be simplified to
jbbc�1 1þ z2

4pb

� �1�bc
1

2
½�1þ ½a� logðT � tÞ��1�zþ ðT � tÞ_z

� �

¼ bbc 1þ z2

4pb

� ��bc

znn �
cbbc

2p
1þ z2

4pb

� ��bc�1

zðznÞ2 þ oð1Þ: ð60Þ
This suggests the expansion
zðn; tÞ ¼ z0ðnÞ þ oð1Þ; ð61Þ
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where z0 satisfies the differential equation
� j
2

bbc�1 1þ z2
0

4pb

� �1�bc

z0 ¼ bbc 1þ z2
0

4pb

� ��bc
d2z0

dn2
� cbbc

2p
1þ z2

0

4pb

� ��bc�1

z0

dz0

dn

� �2

; ð62Þ
subject to the boundary conditions (33). To solve (62), note that after simplification it gives
d2z0

dn2
¼ c

2p
1þ z2

0

4pb

� ��1

z0

dz0

dn

� �2

� j
2b

1þ z2
0

4pb

� �
z0: ð63Þ
This equation is similar to (43). The same solution procedure yields
dz0

dn

� �2

¼ � jp
ð1� bcÞ 1þ z2

0

4pb

� �2ð1�bcÞ

þ C

" #
1þ z2

0

4pb

� �2bc

; bc 6¼ 1: ð64Þ
For sufficiently small j, ODE (64) is written as
dz0

dn

� �2

¼ OðjÞ þ C½ � 1þ z2
0

4pb

� �2bc
or
dn
dz0

¼ OðjÞ þ C½ ��1 1þ z2
0

4pb

� ��bc

;

which is essentially Eq. (37). Thus, we have the general result (39), and for bc ¼ 3=2 we have (41) and (42).
For large j and bc > 1, the ODE (64) with boundary conditions (36) and (35) does have a solution, and thus

MMPDE5 works satisfactorily in this case, while for large j and bc < 1, it works unsatisfactorily. The reason is
essentially the same as that for MMPDE5 with bc ¼ 1, large constant s (see Section 4.1, Case 2).

5.2. MMPDE6

The choice for s for MMPDE6 is the same as that for MMPDE5, i.e., (59). We do not consider the case
bc ¼ 1 since it is the case with constant s which has been discussed in Section 4.2. However, the function
z0 in the expansion of the coordinate transformation (61) now satisfies a different differential equation,
j
2

bbc�1 1þ z2
0

4pb

� �1�bc
d2z0

dn2
¼ bbc 1þ z2

0

4pb

� ��bc
d2z0

dn2
� cbbc

2p
1þ z2

0

4pb

� ��bc�1

z0

dz0

dn

� �2

; ð65Þ
with boundary conditions (33). Letting
v ¼ dz0

dn
;

we have
dv
v
¼ bc 1þ z2

0

4pb

� ��1

1� j
2b

1þ z2
0

4pb

� �� ��1

d 1þ z2
0

4pb

� �
:

Its solution can be found as
v ¼ C
1þ z2

0

4pb

1� j
2b 1þ z2

0

4pb

� �
������

������
bc
or
dn
dz0

¼ C�1 1þ z2
0

2pb

� ��1

� j
2b

�����
�����
bc

: ð66Þ
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If j > 0 is sufficiently small, then ODE (66) becomes
dn
dz0

¼ C�1 1þ z2
0

2pb

� ��1

�OðjÞ
" #bc

;

which is essentially the form Eq. (37). In this case, MMPDE6 works satisfactorily with the general blowup
profile (39), and the special forms (41) and (42) when bc ¼ 3=2.

For sufficiently large j, Eq. (66) is written as
dn
dz0

¼ C�1 j
2b
� 1þ z2

0

2pb

� ��1
" #bc

: ð67Þ
Integrating (67) in z0 from zL
0 to zR

0 and applying the boundary conditions (33) gives
C ¼ 1

nR � nL

Z zR
0

zL
0

j
2b
� 1þ z2

0

2pb

� ��1
" #bc

dz0:
Using the approximation boundary conditions (36) and (35), we have C ¼ þ1. Therefore, ODE (67) with
boundary conditions (36) and (35) does not have solutions. In other words, few points are distributed in
the blowup peak region, and thus the MMPDE fails to work in this case.

5.3. MMPDE4

The dimension Eq. (21) suggests that s be chosen as
s ¼ ju�
1
b: ð68Þ
With this choice the MMPDE4 can be reduced to
�jbbc�1 1þ z2

4pb

� ��bcþ1
1

2
½�1þ ½a� logðT � tÞ��1�znn þ ðT � tÞ_znn

� �

þ jcbbc�1

2p
1þ z2

4pb

� ��bc

zzn
1

2
½�1þ ½a� logðT � tÞ��1�zn þ ðT � tÞ_zn

� �

¼ bbc 1þ z2

4pb

� ��bc

znn �
cbbc

2p
1þ z2

4pb

� ��bc�1

z znð Þ2 þ oð1Þ; ð69Þ
Thus, for any choice of M in the form (12) we can expand zðn; tÞ into (61) with z0ðnÞ satisfying
þ jbbc�1

2
1þ z2

0

4pb

� ��bcþ1
d2z0

dn2
� jcbbc�1

4p
1þ z2

0

4pb

� ��bc

z0

dz0

dn

� �2

¼ bbc 1þ z2
0

4pb

� ��bc
d2z0

dn2
� cbbc

2p
1þ z2

0

4pb

� ��bc�1

z0

dz0

dn

� �2

; ð70Þ
subject to the boundary conditions (33). This simplifies to
d2z0

dn2
¼ c

2p
1þ z2

0

4pb

� ��1

z0

dz0

dn

� �2

:

Note that this equation is independent of j. The transformation
v ¼ dv
dz0
leads to
dv
v
¼ c

2p
1þ z2

0

4pb

� ��1

z0 dz0;
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whose solution is
Table
Summ

MMPD

MMPD

MMPD

MMPD

They a

Table
Summ

MMPD

MMPD

MMPD

MMPD
v ¼ C 1þ z2
0

4pb

� �bc

:

Hence
dn
dz0

¼ C�1 1þ z2
0

4pb

� ��bc

;

which is exactly the Eq. (37). Thus, the coordinate transformation has the form
zðn; tÞ ¼ z0ðnÞ þ oð1Þ; ð71Þ

where z0 is given in (38). The general blowup representation Eq. (39) holds true, and in particular, (42) for
bc ¼ 3=2.

The results obtained in this section are summarized in Table 3. It is interesting to note that the MMPDEs
are dimensionally homogeneous (or scaling invariant) for all cases and have the dominance of equidistribution
when j is sufficiently small. They work satisfactorily when they have the dominance of equidistribution and in
some cases when they do not. This implies that the dominance of equidistribution is sufficient but not
necessary.

5.4. Numerical examples

Numerical results are shown in Table 4 and Figs. 6–10. Once again, they are consistent with the theoretical
predictions summarized in Table 3. In particular, MMPDEs work satisfactorily when they have the domi-
nance of equidistribution.
3
ary of results for variable s. The parameter s is chosen such that MMPDEs are scaling invariant

E M ¼ uc s > 0 j > 0 Theory Tests

E5 bc > 1 juc�1=b Any (39), (41) and (42) Fig. 6
bc < 1 juc�1=b Small (39), (41) and (42) Not shown

Large Unsatisfactory Fig. 7

E6 bc 6¼ 1 juc�1=b Small (39), (41) and (42) Not shown
Large Unsatisfactory Figs. 8 and 9

E4 bc > 0 ju�1=b Any (39), (41) and (42) Fig. 10

ll have the dominance of equidistribution when j is sufficiently small.

4
ary of numerical results for variable s

Es j M ¼ uc p Figs. Satisfactory EP dom. Scaling Inv.

E5 10�5 bc ¼ 1:5 3 6 Yes Yes Yes
1 bc ¼ 1:5 3 Not shown Yes No Yes
10�5 bc ¼ 2=3 3 Not shown Yes Yes Yes
1 bc ¼ 2=3 3 7 No No Yes

E6 10�5 bc ¼ 1:5 3 Not shown Yes Yes Yes
1 bc ¼ 1:5 3 8 No No Yes
10�5 bc ¼ 2=3 3 Not shown Yes Yes Yes
1 bc ¼ 2=3 3 9 No No Yes

E4 10�5 bc ¼ 1:5 3 Not shown Yes Yes Yes
1 bc ¼ 1:5 3 Not shown Yes No Yes
10�5 bc ¼ 2=3 3 10 Yes Yes Yes
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Fig. 6. MMPDE5, M ¼ u1:5ðp�1Þ, p ¼ 3, j ¼ 10�5, bc ¼ 1:5.
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Fig. 7. MMPDE5, M ¼ u2ðp�1Þ=3, p ¼ 3, j ¼ 1, bc ¼ 2=3.
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Fig. 8. MMPDE6, M ¼ u1:5ðp�1Þ, p ¼ 3, j ¼ 1, bc ¼ 1:5.
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Fig. 9. MMPDE6, M ¼ u2ðp�1Þ=3, p ¼ 3, j ¼ 1, bc ¼ 2=3.
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Fig. 10. MMPDE4, M ¼ u2ðp�1Þ=3, p ¼ 3, j ¼ 10�5, bc ¼ 2=3.
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6. Conclusions and comments

In the previous sections we have studied the MMPDE moving mesh method for the numerical solution of
blowup problems for the reaction diffusion equation (1). The concept of the dominance of equidistribution is
introduced. It represents the fact that the term associated with the equidistribution principle dominates the
other terms in a moving mesh equation. We have shown both theoretically and numerically that a moving
mesh PDE works satisfactorily when it has the dominance of equidistribution; see Tables 1–4. In addition,
the property can be verified straightforwardly using dimensional analysis.

The results obtained in this paper can be regarded as generalizations of the previous work [8] because one
example of making an MMPDE have the dominance of equidistribution is to have it preserve the scaling
invariance of the underly physical PDE when choosing a small, constant value for s. As shown in Table 1,
the dominance of equidistribution is sufficient for an MMPDE to work satisfactorily whereas the preservation
of the scaling invariance is neither sufficient nor necessary in general. In addition, our analysis treats both the
case where s is taken as constant and where it is a function depending on the solutions.
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While the study presented here focuses on the classic blowup problem (1), the procedure and the concept of
the dominance of equidistribution are very general and can straightforwardly be applied to other types of
PDEs with blowup solutions.
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